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New light is thrown on Associative Memory Networks. Multi-particle or high-rank tensor approach, which is 
a generalization of the Hopfield model, is considered for the Pattern Recognition. The approach allows to 
enhance significantly informational capacity of Associative Memory Networks. A new efficient method is 
offered for calculating high order or multi-particle nets. The method is confirmed by two experiments, the 
results of which are presented and discussed in the paper.  
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1. Introduction 
The fundamental problem in the theory of Associative Memory is the enhancement of informational capacity. The 
desired goal is to obtain  networks which would reliably memorize a great number of images. Our basic concept is 
to take into consideration multi-particle or high-rank tensors. It can be given the following interpretation. The 
Hopfield net [1] in our terminology corresponds to one-particle nets. The recognition procedure of each coordinate, 
in this case, is based on the coincidence of single points. Two-particle nets are based on the coincidence of pairs of 
points, and so on. In this light it becomes evident that multi-particle nets are more reliable in the recognition of 
patterns. It must be emphasized, however, that it has nothing to do with real particles, but is only a convenient 
interpretation. In the following sections it will be given rigorous mathematical description. 
In other words, by using multi-particle vectors or high-rank tensors we increase the order of non-linearity of nets 
which we will denote the order of non-linearity by the letter k. We will denote images and patterns as bracketed 

(cket-  and bra- ) vectors. By a k-particle vector kF  of a vector X  we will understand the tensor 

product of 
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A typical difficulty arising in the process of pattern recognition is the formation of “chimeras”or “spurious” images, 
which may be a superposition of several patterns. Our assumption is that the increase of the order of non-linearity of 
nets will enhance informational capacity and diminish the formation of “spurious” images. This issue will be 
discussed in section 4.   

2. Construction of Multi-particle Networks and Recognition Procedure 

Suppose we are given N patterns X p  to be memorized by the network. We will assume that all the components 

i X p  of the patterns will be confined to 1 and -1. Index p stands here for the p-th pattern.  We would like to 

construct k-particle nets  with the property that  Ak

 A F Xk
p
k

p=       (2.1) 

 To construct such k-particle nets we must take the following steps. First, we transfer the given patterns into the 
corresponding k-particle vectors Fp

k . Second, we construct for each k the corresponding orthogonal set of k-

particle vectors Vp
k  such that  V Fp

k
q
k

pq= δ , where  δ pq  is the Kronecker symbol. The algorithm for 

constructing the k-particle vectors  Vp
k  is described in the Appendix A. 

Once we have such k-particle vectors  Vp
k , we can write the k-particle net as the sum 
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After the k-particle nets are found, we may organize the recognition procedure in the following way. We take  

an “unknown” vector 

Ak

X  and transfer it into the k-particle vector F k . Then we input it into the net . This 

will  produce another  vector 

Ak

A F Xk k = ′ . In general, the components of the obtained vector will not be 

integers. Therefore we will make binarization, i.e. we will put all coordinates of the vector i X ′  to  the 

( )sign i X ′ ,  thus returning the vector to the original vector space.  Then we repeat it and obtain some other 

vector ′′X  . The process is stopped when the vector arrives at some final equilibrium point. 
For simplicity we take into consideration only  two outcomes. We count it a “success” if an “unknown” vector 
arrives to one of its nearest patterns. Otherwise , it is a “failure”. There are two methods of how to organize such a 
process.  
The first one is to actually construct all the k-particle Fp

k  vectors, make their orthogonal sets of k-particle vectors 

Vp
k  and construct the corresponding k-particle nets in the manner just outlined above.  Ak

The other method allows to avoid actual construction of k-particle vectors. The idea is to directly calculate the 
coefficients  which occur during the iterative procedure: Cp
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 It can be easily shown (see Appendix A and B) that the coefficients C  are given by the following formula p
k
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where the N N× matrix is composed of cofactors of the matrixMij
k X Xi j

k



 . Taking it into account, we can 

write the expression (2.3) for the k-particle nets in the form 
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The above formula allows to quickly calculate output images, for any values of k, without the actual construction of 
the k-particle vectors.  

3. Experimental Results 
We have carried out two tests. 
In the tests we restricted ourselves only to the case of k=2,3,4,5, which is quite enough to see the general tendency. 
The size of the vector space was taken n=100 in the both tests.  
As mentioned above, we used only projections of  1 and -1. The total number of such vectors is .  It is 
convenient to numerate all vectors in the following way. The components of vector 

2n

m  are obtained by  

transferring the decimal number  into the binary one  and then changing all zeros to minus ones. If we call 

vectors from 0 to 2  the "negative" set and those from 2  to 

m
1 11n− − 1n− 2n −  the "positive" set, then one can 

easily see that the two sets differ only in sign. In general, m m−n= − −2 1  for . In 

the first test (see Fig. 1) N patterns were randomly chosen from the “negative” set, in order to exclude identical 
patterns, and a hundred of “unknown” vectors were randomly chosen from all the  vectors. In the second test 
(Fig. 2), instead of choosing “unknown” vectors randomly, the patterns were simply fuzzed with a 10% noise, i.e. 
ten coordinates chosen at random were inverted for a given pattern. 

   ...  ,  m 0 1 1, ,

2n

n= −−2 1

The results of the two tests are presented in the graphs below. 
One can see the general tendency that with the increase of  the order of non-linearity k, the informational capacity is 
increased significantly.  
 



 

 
Figure 1.   Typical recognition curves for  
  random images. 

 
 
         Figure 2.  Typical recognition curves for  
              the patterns noised with 10% . 

 
 
It should be emphasized that the results of the experiments, shown in Figures 1 and 2, are not to be treated as 
absolute, since the patterns were chosen at random. If one takes other samples of patterns the results may deviate 
somewhat from those shown above. However, the general tendency of the enhancement of the informational 
capacity with the increase of k will still be observed.       

4. Discussion 
The tendency of enhancement of the informational capacity with the increase of the order of non-linearity k can be 
explained by the following way. In the linear case of k=1, which is the case of the Hopfield net, the maximum 
number of patterns which can be memorized reliably  is naturally restricted by the size of a pattern , since if we 

add more patterns then the determinant 

n

det X Xi j
k



 will be equal to zero and the completeness of the 

orthogonal set Vp
k  will be broken, whereas the higher cases of will increase this number approximately as . 

Suppose we have several “bad” patterns which are or almost linearly dependent. It is clear that for higher-order 
determinants there would be more chance to remain finite. Therefore the multi-particle nets are more sensitive to the 
difference between the “difficult” patterns.  

nk

 
In conclusion, it should be emphasized the importance of the offered method (2.5) for calculating output images. 
The importance lies in the storage capacity of data. The most powerful modern computers would hardly be capable 
of  calculating multi-particle nets for the values of k higher than, e.g. four or five, when the actual construction of k-
vector is involved. In contrast, our method allows such calculation for any values of k, no matter how high. The 
storage capacity required in this case, in addition to the patterns themselves, is only N 2  values of cofactors. 

5. Appendix 

A. Orthogonalization  procedure 
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Then we add the pattern F k
2  and write a vector orthogonal to F k
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Now we must redefine the vector V k
1  so that it also became orthogonal to F k

2 : 
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 When we add the p-th pattern, we write the vector orthogonal to all of the patterns from F k
1  to Fp
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When this procedure is performed we obtain the needed set of k-particle vectors Vp
k  which can be expressed in 

the form : 
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where  is M pq
k N N×  matrix composed of cofactors of the matrix ( )F Fi

k
j
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B. Theorem 
For any two vectors a and b , their k-particle scalar product can be found by raising their one-particle scalar 
product into the k-th power:  
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