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Three supervisor methods of training neural networks have been compared in a test. The 
essence of all methods compared is to minimize step-by-step the function of estimate H and 
differ  from one another by the direction along which a step of this minimization is made: 
1) to optimize in random direction; 
2) to optimize in direction of H antigradient (steepest descent);  
3) to correct this direction by the quasinewtonian single-step method (BFGS formula). 
The comparison was made on two standard problems: 
1) to recognize the direction of cyclic shift of 0-1 sequence; 
2) to recognize the symmetry of 0-1 sequence. 

 
1. Algorithms 
The steepest descent direction - the antigradient of the estimate H is traditionally considered not 
very convenient for optimization. All textbooks on optimization cite examples of rather simple 
functions which the steepest descent method fails to minimize.  
 In the cases when the matrix of second derivatives is positive definite the direction 
considered the best is the Newtonian direction 
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where D  is the matrix of H second derivatives. 2
 Quadratic forms are minimized by (1) in one step. This formula is, however difficult to 
realize by many reasons.  
 1) Time. Searching for all second derivatives and inversion of  takes too much 
computational costs.  
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 2) Memory. To solve problems of high dimension it takes N2 elements of D  - which is 
too many.  
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 3) And if  is not positive definite?  D2
Contrivances to cope with these difficulties galore. Actually all literature on smooth optimization 
methods is dedicated to this issue.  
 Idea one. Not to differentiate H twice and not to invert the matrix , but to use the 

iteration procedure that in many steps makes possible to accumulate “something like” D . 

D2

2
1−

 Idea two. To store in the memory not the matrix but results of its effect on some vectors 
only.  
 The idea of quasinewtonian methods with limited memory is to search for the correction 
to the deepest descent direction as an effect of the small rank matrix. The matrix is not kept in 



the memory and its effect on the vectors is constructed by the scalar products for several 
specially selected vectors.  
 A simple and fairly efficient method is based on BFGS formula [1,2] and makes use of 
the results of the previous step. To describe it denote: sk is the direction of descent at the k-th 
step; hk is the value of the k-th step (the k-th step is the shift by hksk ; gk is the gradient of the 
estimate function at the initial point of the k-th step; yk = gk+1-gk is the change of the gradient as a 
result of the k-th step. The final point of the k-th step is, of course, the initial point for the k+1-
th. 
 BFGS formula for the descent direction at the k+1-th step is: 
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 After a certain sequence of k steps from time to time it is expedient to get back to the 
steepest descent - to restart. It is also used when a recurrent sk+1 is not a very appropriate 
direction of the descent and moving along it results either in a too small step or does not bring 
any improvement at all.  
 BFGS formula was several times proposed and used to train the neural networks [3-5].  
 
2. Tests 
The problem of training neural networks is considered as a problem of minimizing the mean 
estimate by the training set. The methods compared were: 
 A) searching in random directions (Rnd); 
 B) steepest descent (SD); 
 C) one of quasinewtonian methods (BFGS). 
 The methods were compared by the “training speed” criterion i.e. by the number of 
operating cycles of the neural network required to train a network to recognize all examples in a 
training sampling.  (One operating cycle of a neural network is a discrete time unit in which all 
neurons exchange their signals). One-dimensional optimization in the direction of the step was 
done by parabolic search.  
 Comparison was made for two problems of binary classification: 
 1) of recognition of the direction of cyclic shift of a finite binary sequence  
(with elements 0, 1); 
 2) of recognition of symmetry or non-symmetry of a finite binary sequence. 
 The direction of the shift was recognized for sequences of 8 elements. The initial 
sequence and a sequence shifted one position left or right was applied to the network input (total 
of 16 input signal). The textbook volume was 504 examples.  
 In the problem of recognizing the symmetry the sequence length was assumed to be 10, 
yielding the textbook volume of 1024 examples, of which only 32 belonged to the class of 
symmetrical sequences. In this connection in the last problem the estimate of symmetrical 
examples was taken with the weight 31.  
 Use was made of full connected neural networks with the neuron activation function 
ϕ=x/(c+|x|), where c is the steepness (“characteristic”) of the sigmoid function. The value of c 
used in experiment was equal to 0.1. 
 Minimization for the total estimate of all textbook examples was made. The training was 
ceased when all examples from the training sampling were recognized correctly.  
 To compare the methods 100 neural networks have been generated for each of the test 
problems (to test the training of the symmetry recognition problem by the Rnd method use was 
made of the first 20 neural networks only). The initial values of “synaptic weights” of the neural 
networks were taken randomly with uniform distribution over the interval of (-0.01; 0.01). 



Table 2. Comparison of training methods. 
Problem of recognizing the sequence 
symmetry.  
Method AV σ Min Max 
Rnd 33114 12310 18190 65150 
SD 2820 1053 1180 7115 
BFGS 731 259 388 1831 

Table 1. Comparison of training 
methods. Problem of recognizing the 
shift direction. 
Method AV σ Min Max 
Rnd 7713 2499 3680 16259
SD 2132 935 839 6199
BFGS 296 102 191 1028

 
 
 The training times in both tables are given in thousands of operating cycles of the neural 
networks. Column AV is mean training time; column σ is mean quadratic deviation; columns 
Min and Max are minimum and maximum times, respectively.  
 The results obtained make possible to the following conclusions:  
1) the Rnd method can be competitive provided with the hardware implementation of the neural 
network the cost of memorizing the signal is approximately 50 times more than the cost of signal 
exchange;  
2) the acceleration the quasinewtonian method yields is 5-10 times more compared to the 
steepest descent method.  
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